技术交流-中频炉|熔炼炉|中频电炉|中频熔炼炉|中频感应加热炉|一拖二中频炉-陕西海山机电有限公司
熔炼炉
 + 设为首页 + 收藏网站
网站首页 公司简介 新闻中心 产品展示 熔炼炉技术服务 在线留言 联系我们
   技术交流
售后服务







 



 

技术交流 > 技术交流

中频炉- 可控硅元件
作者:海山中频电炉网[www.sxhaishan.com]2010-11-23 11:41:04

可控硅元件的工作原理及基本特性

1、工作原理

可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

图1 可控硅等效图解图

当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

表1 可控硅导通和关断条件

状态 条件 说明
从关断到导通

1、阳极电位高于是阴极电位
2、控制极有足够的正向电压和电流

两者缺一不可
维持导通

1、阳极电位高于阴极电位
2、阳极电流大于维持电流

两者缺一不可
从导通到关断

1、阳极电位低于阴极电位
2、阳极电流小于维持电流

任一条件即可

2、基本伏安特性

可控硅的基本伏安特性见图2

图2 可控硅基本伏安特性

(1)反向特性

当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

图3 阳极加反向电压

(2)正向特性

当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压

图4 阳极加正向电压

由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。

这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段

3、触发导通

在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。

图5 阳极和控制极均加正向电压

 

可控硅元件—可控硅元件的结构

   

一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T。又由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。

在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。

可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。

可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。

可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。

可控硅从外形上分类主要有:螺栓形、平板形和平底形。

可控硅元件的结构

不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。

图1、可控硅结构示意图和符号图

如何鉴别可控硅的三个极

 

鉴别可控硅三个极的方法很简单,根据P-N结的原理,只要用万用表测量一下三个极之间的电阻值就可以。

阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制极之间的正向和反向电阻在几百千欧以上(它们之间有两个P-N结,而且方向相反,因此阳极和控制极正反向都不通)。

控制极与阴极之间是一个P-N结,因此它的正向电阻大约在几欧-几百欧的范围,反向电阻比正向电阻要大。可是控制极二极管特性是不太理想的,反向不是完全呈阻断状态的,可以有比较大的电流通过,因此,有时测得控制极反向电阻比较小,并不能说明控制极特性不好。另外,在测量控制极正反向电阻时,万用表应放在R*10或R*1挡,防止电压过高控制极反向击穿。

若测得元件阴阳极正反向已短路,或阳极与控制极短路,或控制极与阴极反向短路,或控制极与阴极断路,说明元件已损坏。

可控硅知识的问与答

 

一、可控硅的概念和结构?

晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

Wx9222.jpg (5902 字节)

图2

二、晶闸管的主要工作特性

为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢?

Wx9223.jpg (7036 字节)

图3

这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。

晶闸管的特点: 是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。

三、用万用表可以区分晶闸管的三个电极吗?怎样测试晶闸管的好坏呢?

普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接的是阴极K,剩下的一个就是阳极A了。测试晶闸管的好坏,可以用刚才演示用的示教板电路(图3)。接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的

四、晶闸管在电路中的主要用途是什么?

普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路。现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。

五、在桥式整流电路中,把二极管都换成晶闸管是不是就成了可控整流电路了呢?

在桥式整流电路中,只需要把两个二极管换成晶闸管就能构成全波可控整流电路了。现在画出电路图和波形图(图5),就能看明白了。

六、晶闸管控制极所需的触发脉冲是怎么产生的呢?

晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小晶闸管触发大晶闸管的触发电路,等等。今天大家制作的调压器,采用的是单结晶体管触发电路。

七、什么是单结晶体管?它有什么特殊性能呢?

单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。我们先画出它的结构示意图〔图7(a)〕。在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联〔图7(b)〕。值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UE<UA,二极管VD截止;当UE大于单结晶体管的峰点电压UP(UP=UD+UA)时,二极管VD导通,发射极电流IE注入RB1,使RB1的阻值急剧变小,E点电位UE随之下降,出现了IE增大UE反而降低的现象,称为负阻效应。发射极电流IE继续增加,发射极电压UE不断下降,当UE下降到谷点电压UV以下时,单结晶体管就进入截止状态。

八、怎样利用单结晶体管组成晶闸管触发电路呢?

单结晶体管组成的触发脉冲产生电路在今天大家制作的调压器中已经具体应用了。为了说明它的工作原理,我们单独画出单结晶体管张弛振荡器的电路(图8)。它是由单结晶体管和RC充放电电路组成的。合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。这样,在R1两端输出的是尖顶触发脉冲。此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。这样周而复始,电路中进行着周期性的振荡。调节RP可以改变振荡周期。

九、在可控整流电路的波形图中,发现晶闸管承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?

为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。

Wx9221.jpg (10891 字节)

怎样才能做到同步呢?大家再看调压器的电路图(图1)。请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。在晶闸管没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。

双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。

可控硅元件—可控硅整流电路

 

一、单相半波可控整流电路

1、工作原理

电路和波形如图1所示,设u2=U2sinω。

图1 单相半波可控整流

正半周:

0<t<t1,ug=0,T正向阻断,id=0,uT=u2,ud=0

t=t时,加入ug脉冲,T导通,忽略其正向压降,uT=0,ud=u2,id=ud/Rd。

负半周:

π≤t<2π当u2自然过零时,T自行关断而处于反向阻断状态,ut=0,ud=0,id=0。

从0到t1的电度角为α,叫控制角。从t1到π的电度角为θ,叫导通角,显然α+θ=π。当α=0,θ=180度时,可控硅全导通,与不控整流一样,当α=180度,θ=0度时,可控硅全关断,输出电压为零。

2、各电量关系

ud波形为非正弦波,其平均值(直流电压):

由上式可见,负载电阻Rd上的直流电压是控制角α的函数,所以改变α的大小就可以控制直流电压Ud的数值,这就是可控整流意义之所在。

流过Rd的直流电流Id:

Ud的有效值(均方根值):

流过Rd的电流有效值:

由于电源提供的有功功率P=UI,电源视在功率S=U2I(U2是电源电压有效值),所以功率因数:

由上式可见,功率因数cosψ也是α的函数,当α=0时,cosψ=0.707。显然,对于电阻性负载,单相半波可控整流的功率因数也不会是1。

比值Ud/U、I/Id和cosψ随α的变化数值,见表1,它们相应的关系曲线,如图2所示

表1 Ud/U、I/Id和cosψ的关系

α 30° 60° 90° 120° 150° 180°
Ud/U
I/Id
cosψ
0.45
1.57
0.707
0.42
1.66
0.698
0.338
1.88
0.635
0.225
2.22
0.508
0.113
2.87
0.302
0.03
3.99
0.12
0
-
0

图2 单相半波可控整流的电压、电流及功率因数与控制角的关系

由于可控硅T与Rd是串联的,所以,流过Rd的有效值电流I与平均值电流Id的比值,也就是流过可控硅T的有效值电流IT与平均值电流IdT的比值,即I/Id=It/IdT。

二、单相桥式半控整流电路

1、工作原理

电路与波形如图3所示

图3、单相桥式半控整流

正半周:

t1时刻加入ug1,T1导通,电流通路如图实线所示。uT1=0,ud=u2,uT2=-u2。u2过零时,T1自行关断。

负半周:

t2时刻加入ug2,T2导通,电流通路如图虚线所示,uT2=0,ud=-u2,ut1=u2。u2过零时T2自行关断。

2、各电量关系

由图3可见,ud波形为非正弦波,其幅值为半波整流的两倍,所以Rd上的直流电压Ud:

直流电流Id:

电压有效值U:

电流有效值I:

功率因数cosψ:

比值Ud/U,I/Id和cosψ随α的变化数值见表2,相应关系曲线见图4

表2 Ud/U、I/Id、cosψ与α的关系表

α 30° 60° 90° 120° 150° 180°
Ud/U
I/Id
cosψ
0.9
1.112
1
0.84
1.179
0.985
0.676
1.335
0.896
0.45
1.575
0.717
0.226
1.97
0.426
0.06
2.835
0.169
0
-
0

图4、单相全波和桥式电路电压、电流及功率因数与控制角的关系

把单相全波整流单相半波整流进行比较可知:

(1)当α相同时,全波的输出直流电压比半波的大一倍。

(2)在α和Id相同时,全波的电流有效值比半波的减小倍。

(3)α相同时,全波的功率因数比半波的提高了倍。

三、整流电路波形分析

1、单相半波可控整流

(1)电阻性负载(见图1)

  • 电阻性负载,id波形与ud波形相似,因为可控硅T与负载电阻Rd串联,所以id=id。

  • 可控硅T承受的正向电压随控制角α而变化,但它承受的反向电压总是负半波电压,负半波电压的最大值为U2。

  • 线路简单,多用在要求不高的电阻负载的场合。

(2)感性负载(不带续流二极管,见图5):

图5 电感性负载无续流二极管

  • 电机电器的电磁线圈、带电感滤波的电阻负载等均属于电感性负载。

  • 电感具有障碍电流变化的作用可控硅T导通时,其压降uT=0,但电流id只能从零开始上升。id增加和减少时线圈Ld两端的感应电动势eL的极性变化如图示。

  • 当电源电压u2下降及u2≥0时,只要释放磁场能量可以维持id继续流通,可控硅T仍然牌导通状态,此时ud=u2。当u2<0时,虽然ud出现负值,但电流id的方向不变。

  • 当电流id减小到小于维持电流IH时,可控硅T自行关断,id=0,UT=u2,可控硅承受反压。

  • 负载电压平均值:其中电感Ld两端电压的平均值为零。

  • 电感Ld的存在使负载电压ud出现负值,Ld越大,ud负值越大,负载上直流电压Ud就越小,Id=Ud/Rd也越小,所以如果不采取措施,可控硅的输出就达不到应有的电压和电流。

(3)感性负载(带续流二极管,见图6):

图6 电感性负载有续流二极管

  • 在负载上并联一只续流二极管D,可使Ud提高到和电阻性负载时一样,

  • 在电源电压u2≤0时,D的作用有点:①把电源负电压u2引到可控硅T两端,使T关断,uT=u2;②给电感电流续流,形成iD;③把负载短路,ud=0,避免ud出现负值,使负载上直流输出电压ud提高。

  • 负载电流为何控硅电流iT和二极管的续流iD之和,即id=iT+iD。当ωLd≥R时,iD下降很慢使id近似为一条水平线,所以流过T和D的电注平均值与有效值分别为:平均值:IdT=(θ/360°)Id;IdD=[(360°-θ)/360°]Id;有效值:IT=根号下(θ/360°)Id;ID=根号下[(360°-θ)/360°]Id

  • 可控硅T开始导通后,如果电感Ld很大,iT的上升很慢,这就有可能导致触发脉冲消失时可控硅的电流还上升不到维持导通状态的维持电流,就是说,可控硅触发不了,为了使可控硅可靠触发,触发脉冲应该足够宽,或者在负载两端并联一只电阻,以利于加快iT的上升。

    晶闸管的工作原理

    --------------------------------------------------------------------------

     

    在中频炉中整流侧关断时间采用KP-60微秒以内,逆变侧关短时间采用KK-30微秒以内这也是KP管与KK管的主要区别

    晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。


    晶闸管的工作条件:


    1. 晶闸管承受反向阳极电压时,不管门极承受和种电压,晶闸管都处于关短状态。

    2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

    3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

    4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

    从晶闸管的内部分析工作过程:

    晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2

    当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。
    设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,
    晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:
    Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0
    若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig
    从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式
    硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。
    当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。
    式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。
    在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。

  www.sxhaishan.com
版权所有:陕西海山机电有限公司
电话:029-84333925 84367828 84362619
传真:029-84368591 84362619
地址:西安市未央区红光路和平工业园五号路  

技术支持:水云天西安网站建设服务中心
热线:13891812360   13038592858
E-mail:gf3725@163.com   hds6718@163.com
邮编:710086   

备案号:陕ICP备08003670号